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SUMMARY

Pressure-based methods such as the SIMPLE algorithm are frequently used to determine a coupled solution
between the component momentum equations and the continuity equation. This paper presents a colocated
variable pressure correction algorithm for control volumes of polyhedral/polygonal cell topologies. The
correction method is presented independent of spatial approximation. The presence of non-isotropic
momentum source terms is included in the proposed algorithm to ensure its applicability to multi-physics
applications such as gas and particulate flows. Two classic validation test cases are included along with
a newly proposed test case specific to multiphase flows. The classic validation test cases demonstrate the
application of the proposed algorithm on truly arbitrary polygonal/polyhedral cell meshes. A comparison
between the current algorithm and commercially available software is made to demonstrate that the
proposed algorithm is competitively efficient. The newly proposed test case demonstrates the benefits of
the current algorithm when applied to a multiphase flow situation. The numerical results from this case
show that the proposed algorithm is more robust than other methods previously proposed. Copyright q
2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The use of numerical techniques in engineering design is a well established and standard part of
today’s industrial design process. In particular, fluid flow analysis based on control volume or finite
element techniques is now used successfully on a regular basis. Because of this success, engineers
continue to push the limits of these techniques by applying them to more complicated geometries.
Frequently the overall success of modeling a complex industrial geometry is not limited by the
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MOMENTUM/CONTINUITY COUPLING 947

physics of the flow but by the engineers ability to generate a quality mesh in a timely manner. The
control volume community has recently responded to these limitations by introducing numerical
algorithms applicable to polygonal/polyhedral mesh topologies. This new cell type provides a
broad range of cell topologies acceptable to these algorithms and hence greater flexibility for
generating quality meshes.

This paper presents a colocated variable pressure correction algorithm based on the SIMPLE
technique, made popular by Patankar [1]. The method presented is applicable to polygonal/
polyhedral cell topologies and is developed using generalized spatial discretization. A freshly
derived form of the pressure correction equation is presented, which includes non-isotropic
momentum source terms frequently encountered in multi-physics applications such as multi-
phase flows. Several polygonal/polyhedral test cases are presented detailing the application of the
proposed algorithm and its improvements to previously published methods.

2. PUBLISHED FORMS OF THE SIMPLE ALGORITHM

The initial SIMPLE algorithm proposed by Patankar [2] has experienced intense scrutiny over the
years. This algorithm has proven to be stable and efficient leading virtually all commercial CFD
packages to offer some form of this method. Since its introduction, this algorithm has evolved to
meet the demands of more complex geometries.

The form of the SIMPLE algorithm presented in this paper introduces the variable mc. This
variable represents a mass imbalance between two velocity fields, one conserving momentum and
another conserving mass on a single control volume mesh topology. This variable does not appear
in the original line structured form of the SIMPLE algorithm, since the original algorithm employed
a staggered grid arrangement where mass conservation is in-forced on the primary mesh topology
and each component of the momentum equation is enforced on a separate staggered mesh. This
method does not enforce conservation of mass and momentum on a single control volume, but
chooses to scatter the mc imbalance over several mesh topologies.

Chow and Rhie [3] were the first to introduced the mc term in the framework of a curvilinear
colocated line structured grid. This relationship assumed that each momentum equation followed
a particular line in the underlying structured mesh. This assumption simplified the relationship
between the momentum equation and the pressure correction equation since all face normals are
aligned with each momentum equation, see Section 7 for a detailed development of this relationship.
The introduction of this term provided a means of stabilizing the coupled solution of the momentum
and continuity equation on a single colocated mesh topology.

The colocated form of the SIMPLE algorithm has been extended to unstructured mesh topologies,
see [4, 5]. The development of the pressure correction equation by these authors utilized simplified
forms of the linearized momentum coefficients since the momentum equation is not aligned with the
mesh topology. Mathur and Murthy [4] suggest averaging the linear system momentum coefficients,
Aui
p , since these values are isotropic throughout the domain (except in boundary cells). Ferziger

and Peric [5] on the other hand suggest using the normal of the coefficient, Aui
p ·ni . Either of

these methods have been shown to effectively damp out pressure checker boarding, providing an
efficient and reliable method for coupling the momentum and continuity equations.

Date [6] has presented a fluid dynamical view of the mc term. His analysis accounts for
non-isotropic behavior through multidimensional averaging. This method attempts to reconstruct
a line structure similar to the structured mesh algorithm through complex interpolations. This
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948 J. D. FRANKLIN AND J. S. LEE

multidimensional averaging technique results in a dereferenced pressure correction field based on
a smoothed pressure field. This smoothed pressure field provides a method of distributing the
mc imbalance during the solution of the pressure correction equation providing the commonly
referenced fourth-order damping typically associated with the colocated form of the SIMPLE
algorithm, see [5].

From the perspective of multiphase flow one cannot assume that the Aui
p momentum coefficients

will be isotropic and in fact most time will not be. One might argue that it does not matter
how this term is approximated since it is only used as a correction and at convergence this
approximation will not play a role in the final solution. Snider [7], however, has noted that colocated
variable arrangements exhibit instabilities compared with the staggered formulation when applied
to multiphase flows. Section 9.2 demonstrates that the method proposed in this paper enhances the
stability and convergence of the SIMPLE-based momentum/continuity coupling by treating the
Aui
p terms in a more rigorous form. The proposed form in this paper is compared with the form

of [4] when applied to a multiphase application.

3. GOVERNING EQUATIONS

The conservative/integral form of the steady state momentum equations for the Cartesian coordinate
system is presented by Ferziger and Peric [5].∫

S
�ui (u·n)dS=

∫
S
(Ti ·n)dS+

∫
V−
FdV− (1)

where the tensor, (Ti ), for a Newtonian fluid has the following form:

Ti =�∇ui +�(∇u)T ·ii −(p+ 2
3�∇ ·u)ii (2)

This form of the momentum equation is based on a control volume V− bounded by a surface S,
which has an outward pointing unit normal n. An external momentum force term, F, is included in
this form of the momentum equation. The subscript (i) indicates each of the Cartesian components
of the momentum equation and the fluid velocity is given the symbol u.

The integral form of the continuity equation is as follows:∫
S
�(u·n)dS=0 (3)

4. DISCRETIZATION

4.1. Scalar transport equation

The transport of a scalar, �, by means of convection, diffusion, and a volumetric source term is
given as follows: ∫

S
��(u·n)dS=

∫
S

(
�

��

�n

)
dS+

∫
V−
S� dV− (4)
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MOMENTUM/CONTINUITY COUPLING 949

Figure 1. Two-dimensional polygonal cell discretization.

The discretization of this equation follows standard practice. The surface integrals are considered
to be a series of semi-planar faces, f , bounding a control volume, V−.

∑
f

� f �(u f ·n)A=∑
f

� f

(
��

�n

)
f
A+S�V− (5)

To complete this discretization, spatial approximations are required. These approximations are
written implicitly and explicitly in terms of volume-averaged quantities stored at the centroid of
each control volume, see Figure 1. For the current development, a linear variation (second-order
accurate) is assumed between control volume centroids. The volumetric source term, S�, is written
in a linearized form.

4.1.1. Convection term. The left-hand term in Equation (5) is typically referred to as the convection
term. This term represents the mass flux of � f passing through face f . There have been many
methods proposed in the literature for approximating � f , see [8] for some of the early work in
this area and more recently [9, 10]. All of these methods have the same fundamental linearized
form about a control volume face and can be generally written as follows:

� f =Cn
f,implicit�n−C p

f,implicit�p︸ ︷︷ ︸
implicit

+C f,explicit(�)︸ ︷︷ ︸
explicit

(6)

where Cn
f,implicit and C p

f,implicit are the implicit interpolation factors and C f,explicit(�) is an explicit
adjustment to the implicit interpolation, typically a function of the control volume values in the
vicinity of face f .

4.1.2. Diffusion term. The first term on the left-hand side of Equation (5) is the diffusion term.
It represents the propagation of � between control volumes due to spatial gradients. The normal
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950 J. D. FRANKLIN AND J. S. LEE

gradient across face f can be written in generalized form as follows:(
��

�n

)
f
=D f,implicit(�n−�p)︸ ︷︷ ︸

implicit

+D f,explicit(�)︸ ︷︷ ︸
explicit

(7)

where the implicit portion is written based on the centroidal values on either side of the face and
an implicit coefficient, D f,implicit. The explicit function, D f,explicit(�), is based on a select number
of control volume values in the vicinity of face, f . Just as with the convection term many methods
have been used to represent this gradient, see [4, 11].

4.1.3. Face centroidal interpolation. The discretization of the scalar value� is based on a colocated
variable storage scheme. The current development also stores the transport variables such as fluid
density and diffusivity at the centroids of the control volumes. Interpolation is used to determine
the face values such as the � f coefficient in Equation (5). Simple linear interpolation was originally
used with traditional Cartesian structured grids. More complicated mesh topologies have lead to
more sophisticated interpolation techniques using shape functions or polynomial approximations
such as least squares. Just as with the other terms the face interpolated values will be written in a
generalized form:

� f =� (8)

where the over-line represents a general interpolation technique based on the near face control
volume values.

4.1.4. Linearized source. To enhance stability proper source term linearization is advisable.
Patankar [1] has established some basic rules for the development of well-conditioned linear
systems. Rule three recommends the following form for linearized source terms.

S�(�)= Sexplicit+Simplicit�p (9)

where the subscript, p, denotes the primary cell variable, �p, located at the control volume centroid.
The implicit and explicit portions of the source term are indicated by subscripts, where the implicit
portion must always be negative to increase the diagonal dominance of the linear system.

5. MOMENTUM EQUATION

The discretization of the linear momentum equation, Equation (1), in the Cartesian coordinate
system has the following form:

∑
f
[ui�u·nA] f −∑

f
[A�] f

(
�ui
�n

)
f

=∑
f

{[
A�

�u j

�xi

]
f
·n−

[
A
2

3
�

�u j

�x j
ni

]
f

−[Apni ] f
}

f

+FiV− (10)
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where A is the face surface area, u is the fluid velocity vector (components ui ), n is the surface
outward pointing unit normal (components ni ), xi represents each of the Cartesian coordinates and
the volumetric force term F is shown in terms of its Cartesian components Fi . Each component of
the momentum equation can be expressed in terms of the standard convection diffusion equation,
Equation (5), with the following substitutions:

� f = ui

� f = �

��

�n
= �ui

�n

S� =∑
f

{[
A�

�u j

�xi

]
f
·n−

[
A
2

3
�

�u j

�x j
ni

]
f

−[Apni ] f
}

f

+FiV−

(11)

To ease further manipulation the momentum equation is typically further simplified to the
following form:

ui,p A
ui
p +∑

f
ui, f A

ui
f =Qui −∑

f
[Apni ] f (12)

where the Aui
p and Aui

f terms are collections of the implicit coefficients and the Qui represents the
explicit terms for each of the ui momentum equations. The Cartesian velocity components at the
centroid of the primary cell are given the symbol ui,p and the notation ui, f denotes the centroidal
value connected to the primary cell through face f . The presence of non-isotropic source terms,
S�, can lead to a significant variation in Aui

p and Aui
f . Note also that the explicit pressure force

terms are not grouped with the other explicit terms since they require special consideration when
coupling with the continuity equation.

The solution of Equation (12) employs relaxation. For this development each momentum equa-
tion will have the same relaxation, assigned the symbol �, and will be introduced as follows:

Aui
p

�
ui,p+∑

f
ui, f A

ui
f =Qui −∑

f
[Apni ] f +(1−�)

Aui
p

�
u◦
i,p (13)

where u◦
i,p is some initial velocity.

6. CONTINUITY EQUATION

The discretization of the continuity equation, Equation (3), results in the following relationship:∑
f

� f (u f ·n)A=0 (14)

which is simply the sum of the mass flows through each face bounding the primary control
volume p.
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952 J. D. FRANKLIN AND J. S. LEE

7. COUPLING

One technique that has been used extensively to determine a coupled solution between the
momentum and continuity equations is the so-called pressure correction technique. Many varia-
tions of this technique have been proposed. Patankar [1] and his commonly cited text book is a
common reference for the SIMPLE version of this technique. Recently, Date [6] has reviewed this
technique from the perspective of colocated variable arrangements.

This pressure projection technique alternates between individual solutions of the momentum
equations and a velocity projection relationship, which directs the velocity field toward conservation
of mass. This iterative process begins with an estimated pressure field and solves the momentum
equations for the Cartesian component velocity field. This velocity is not typically mass conser-
vative, since conservation of momentum does not enforce conservation of mass. The continuity
equation is then used to project a new velocity and pressure field, which conserves mass. Typically
only a portion of the full correction is taken since several of the correction terms are difficult
to calculate and are usually ignored. If this procedure is repeated, however, the amount of the
projection tends to zero resulting in a velocity and pressure field satisfying both conservation of
mass and momentum.

7.1. Pressure/velocity corrections

The standard notation used when developing a relationship for this technique is as follows:

uk+1
p = ûkp+u′

p, pk+1= pk+ p′ (15)

where each variable represents the following quantities at the centroid of a primary control volume:

uk+1
p mass conserving velocity field

ûkp momentum conserving velocity field

u′
p velocity field adjustment to achieve mass conservation

pk+1 mass conserving pressure field

pk assumed pressure field for determining the momentum conserving velocity field ûkf
p′ adjustment to pressure field to achieve mass conserving pressure field.

Conservation of mass, Equation (14), is the starting point for the development of the projection
technique. Rewriting this equation using the above notation:∑

f
� f (u

k+1
f ·n)A=∑

f
� f (u

k+1
p ·n)A=∑

f
� f (u

k+1
i,p ni )A=0 (16)

where the face centroidal velocity, uk+1
f , can be expressed in terms of the interpolated cell centroidal

velocity, uk+1
p .

When the momentum and continuity equations are in balance with the pressure field, the
discretized form of the momentum equation can be used to form a relationship for, uk+1

i,p .

uk+1
i,p = 1

Aui
p

(
Quki −∑

f
uk+1
i, f Aui

f −∑
f
[Apk+1ni ] f

)
(17)
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Equation (17) is inserted into Equations (16) and (15), which are used to write the continuity
equation in terms of momentum conservative velocities and their corrections.

∑
f

[
A� f

1

Aui
p

∑
f
[Ap′ni ] f

]
f

ni

︸ ︷︷ ︸
Pressure Correction

=∑
f

⎡
⎣A� f

(
1

Aui
p

(
Quki −∑

f
ûki, f A

ui
f −∑

f
[Apkni ] f

))⎤⎦
f

ni

︸ ︷︷ ︸
Un-relaxed Momentum Conserving Velocity, ûki,p

−∑
f

⎡
⎣A� f

1

Aui
p

(∑
f
u′
i, f A

ui
f

)⎤⎦
f

ni

︸ ︷︷ ︸
Velocity Correction Term

(18)

The SIMPLE projection variation will be used in the current development, hence, the velocity
correction term of Equation (18) will be neglected. Since relaxation is employed when solving the
momentum equation, we will replace the unrelaxed velocity relationship in Equation (18) with the
relaxed form, Equation (19):

ûki,p = �

Aui
p

(
Quki −∑

f
ûki, f A

ui
f −∑

f
[Apkni ] f

)
+(1−�)u◦

i,p (19)

This leads to the standard pressure correction, p′, based continuity equation used in SIMPLE-
based algorithms. The current form of this equation cannot be discretized to determine the pressure
correction, p′, distribution for mass conservation, since the pressure correction relationship, the
left-hand side of Equation (18), is expressed in terms of interpolated pressure correction values.
The following sections outline a method for transforming this relationship into a form which can
be used to solve for the p′.

7.2. Pressure gradient manipulation

The surface integrations containing the pressure terms, p′ and pk , can be expressed in terms of
gradients by means of Gauss’ Theorem:

(
��

�xi

)
p
≈

∫
V−
��

�xi
dV−

V− ≈
∑

f [A�ni ] f
V− (20)

which results in the following relationship for a general pressure field p (either p′ or pk):

−∑
f

[
A� f

1

Aui
p

∑
f
[pAni ] f

]
f

ni =−∑
f

[
A� f

V−
Aui
p

(
�p
�xi

)
p

]
f

ni (21)

The volume gradient of p interpolated to the cell face does not lend itself to discretization.
However, if it were written in terms of a face normal gradient it could be discretize using the

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 61:946–969
DOI: 10.1002/fld
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standard relationship for a normal scalar gradient on a face, see Equation (7). Consider transforming
the pressure gradient to a face-based coordinate system. Where the face-based coordinate system
is a rotation of the Cartesian coordinate system with axis n, s and t. The n axis is aligned normal
to the control volume face and the t and s axis are the tangential coordinate directions on the
control volume face.

�p
�xi

= �p
�n

ni + �p
�t

ti + �p
�s

si (22)

Substitution of this relationship and separation into normal and tangential components results
in the following relationship, where the tangential components can be shown to be zero and can
be eliminated:

−∑
f

[
A� f

V−
Aui
p

(
�p
�xi

)
p

]
f

ni = −∑
f

[
A� f

V−ni
Aui
p

(
�p
�n

)
p

]
f

ni

︸ ︷︷ ︸
normal

−∑
f

[
A� f

V−
Aui
p

(
�p
�t

ti + �p
�s

si

)
p

]
f

ni

︸ ︷︷ ︸
tangential

(23)

The interpolated normal gradient can be represented by a direct gradient across each control
volume face resulting in a form, which can be discretized using the standard face gradient,
Equation (7).

−∑
f

[
A� f

V−
Aui
p

(
�p
�xi

)
p

]
f

ni =−∑
f
A� f

V−nini

Aui
p

(
�p
�n

)
f

(24)

7.3. Pressure correction relationship

Equation (18) can be simplified using the assumptions presented in Sections 7.1 and 7.2 to Equation
(25), where the assumptions for the pressure have been consistently applied to both the pressure,
pk , and the pressure correction, p′:

∑
f

[
A� f

V−nini

Aui
p

(
�p′

�n

)
f

]
f

=∑
f

⎡
⎣A� f

(
�

Aui
p

(
Quki −∑

f
ûki, f A

ui
f

)
+(1−�)u◦

i,p

)
ni

⎤
⎦

f

−∑
f

[
A� f �

V−nini

Aui
p

(
�pk

�n

)
f

]
f

(25)
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From a data manipulation standpoint it is convenient to note that if the pressure surface integration
is added and subtracted from the right-hand side of Equation (25) the relaxed form of the momentum
conservative velocity, Equation (19), appears.

−∑
f

[
A� f

V−ni ni

Aui
p

(
�p′

�n

)
f

]
f

= −∑
f

⎡
⎢⎢⎢⎢⎢⎢⎣A� f

(
�

Aui
p

(
Quki −∑

f
ûki, f A

ui
f −∑

f
[Apkni ] f

)
+(1−�)u◦

i,p

)
︸ ︷︷ ︸

ûki,p

ni

⎤
⎥⎥⎥⎥⎥⎥⎦

f

+∑
f

⎡
⎢⎢⎢⎢⎣A� f �

(
V−ni ni

Aui
p

(
�pk

�n

)
f
− 1

Aui
p

∑
f

[
Apkni

]
f n

i

)
︸ ︷︷ ︸

mc

⎤
⎥⎥⎥⎥⎦

f

(26)

This substitution results in the commonly referenced stabilization term, mc. The first form of
mc was introduced by Chow and Rhie [3]. This term is the difference between two methods of
representing the normal pressure gradient at the surface of the control volume. One method is
simply an interpolated volume-centered pressure gradient and the other is a direct normal gradient.
When the pressure field is linear this term will be zero, however, when the pressure field is
non-linear then this term will be non-zero and must be accounted for to avoid pressure checker
boarding.

7.4. Velocity correction

The mc stabilization term is included by introducing a mass conservative control surface normal
velocity, ukf,n , as suggested by Chow and Rhie [3]. The right-hand side of Equation (26) is used
to form

ukf,n = ûki,p ·ni +mc (27)

Note that Equation (27) is based on the control volume primary variables, uki,p and pk , and the
discretization of the momentum equation. This technique mimics the staggered formulation via
interpolation and highlights the inclusion of the mc term inherent in all SIMPLE-type pressure
projection formulations.

Once the primary pressure correction, p′
p, has been computed, via Equation (26), the momentum

conserving velocity and pressure fields are corrected as follows:

uk+1
i,p = ûki,p− V−

Aui
p

∑
f
[Ap′ni ] f (28)

uk+1
f,n = ûkf,n− V−nini

Aui
p

(
�p′

�n

)
f

(29)

pk+1
p = pkp+�pres p

′
p (30)

Note that cell-centered, ûki,p, and face-centered, ukf,n , velocities are corrected separately using
pressure gradient treatments consistent with the continuity equation treatment. The pressure is also
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corrected using only a portion of the full correction, �pres, to ensure stability since some of the
terms were neglected in the development of the pressure correction relationship.

7.5. Coupling algorithm

The resulting algorithm for the solution of the coupled momentum/continuity relationship can be
paraphrased as follows:

1. Guess a value for u◦
i,p, u

◦
f,n and p.

2. Solve Equation (13) for the momentum conserving velocity, ûkp, using the assumed values
from step 1.

3. Solve Equation (26) for the volume-centered pressure correction, p′
p.

4. Correct the velocity and pressure via Equations (28), (29) and (30).
5. Return to step 1 using uk+1

i,p , uk+1
f,n and pk+1

p as the initial guess values.

8. BOUNDARY CONDITIONS

The application of boundary conditions for the proposed algorithm follow the standard methods
used in SIMPLE-based colocated algorithms, see [5]. At wall boundaries, a no-slip condition is
imposed in the momentum equation and a Neumann condition, �p′/�n=0, is applied in the pressure
correction equation. Fixed values are used for inflow boundaries in the momentum equations and
�p′/�n=0 in the pressure correction equation. The common practice of zero diffusive flux for
constant pressure out flow boundary conditions is used in the momentum equations and a fixed
pressure correction of zero, a Dirichlet condition, is used in the pressure correction equation.
Symmetry boundary conditions enforce a zero tangential shear and a zero normal flow condition in
the momentum equations. Since a symmetry plane implies zero normal flow the pressure correction
equation uses the same condition imposed for the wall boundary condition, �p′/�n=0.

9. RESULTS

The proposed pressure correction algorithm is applied to two classic validation cases and introduces
an idealistic multiphase flow case. The classic cases demonstrate that the algorithm is competitive
with existing methods and is applied using arbitrary polygonal/polyhedral mesh topologies. The
multiphase flow case demonstrates the importance of properly handling the momentum coeffi-
cients in the projection algorithm by comparing the proposed algorithm with previously published
methods.

The MUSCL algorithm presented by Darwish and Moukalled [10] is used for the generalized
convective face value � f , Equation (6). The spatial discretization proposed by Jasak [12] is used
for Equations (7) and (8). The same relaxations are used for all cases �=0.7 and �pres=0.3,
following the common rule of maintaining the sum of the two relaxations to 1, see [5]. Zero was
assumed as the initial values for all primary variables (velocity and pressure).
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Figure 2. Cavity geometry [13].

The absolute residual, R�, for the momentum equation has been evaluated using Equation (31)
and the pressure correction/continuity equation using Equation (32). The iteration process was
continued for each model until all residuals dropped below 1.0e−4.

R� = ∑
cells p

∣∣∣∣∣∑f A f � f +b−Ap�p

∣∣∣∣∣ (31)

Rmass= ∑
cells p

∣∣∣∣∣∑f ukf,n

∣∣∣∣∣ (32)

9.1. L-shaped cavity

Two-dimensional lid-driven cavities have been used extensively as benchmark problems for
momentum/continuity coupling algorithms. Fluid motion within the cavity is driven through shear
forces provided by the translational motion of one or more of the bounding cavity surfaces. The
L-shaped cavity introduced by Oosterlee et al. [13] is chosen for this work. The geometry for this
cavity is detailed in Figure 2.

Arbitrary polygonal mesh topologies were used at three different cell densities. The coarsest
mesh is shown in Figure 3. Numerical results are compared with the data provided by Oosterlee
et al. [13] in Figures 4 and 5. Figure 4 compares the horizontal velocity along the vertical line Dv.
The vertical velocity on the horizontal line Dh is compared in Figure 5. The finest mesh density,
6848 cells, matches the data provided by Oosterlee et al. [13].

9.1.1. 90◦ cylindrical elbow. Laminar flow through a smooth 90◦ cylindrical elbow was chosen for
a three-dimensional evaluation of the proposed algorithm. The velocity and pressure distributions
through this geometry are strongly three dimensional. The stream-wise velocity along the pipe is
influenced by the secondary currents in the pipe cross-section due to centrifugal forces generated by
the bend curvature. Enayet [14] has studied this flow experimentally and has provided stream-wise
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Figure 3. Coarse polygonal mesh topology.
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Figure 4. Horizontal velocity on line Dv.

velocity data along the centerline of the pipe. He and Salcudean [15] have presented numerical
comparisons to this data using a curvilinear mesh topology.

The geometry of the experimental set up is outlined in Figure 6, where D was chosen to be 1 in
this work. A uniform inlet velocity of 1 was used along with a fluid density of 1 and a viscosity of
0.002 to replicate the laminar Reynolds number of 500 documented by [14]. Four different mesh
densities were investigated using fully arbitrary polyhedral mesh topologies. The mesh densities
varied between a coarse mesh of 3180 control volumes to a fine mesh of 586 858 control volumes.
The coarsest surface mesh is shown in Figure 7 and a close up of the finest density mesh is shown
in Figure 8.
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Figure 6. 90◦ cylindrical elbow geometry.

9.1.2. Comparison with experimental data. Figures 7–12 compare the current computational
results to the experimental data of [14]. Each figure details the stream-wise velocity at the centerline
of the pipe through the cross-section of the pipe. The velocity profiles shown in Figures 9–11 show
how the velocity pattern transitions from a nearly parabolic fully developed profile at �=30 to a
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Figure 7. Coarse mesh topology.

Figure 8. Fine mesh topology.

skewed profile at �=75 due to the bend geometry. The velocity profile at h=D, see Figure 12,
indicates how the velocity distribution has begun its transition back to a fully developed profile. The
finest mesh density predicts the velocity transitions throughout this geometry well, demonstrating
the validity of the proposed algorithm.

9.1.3. Comparison with commercial software. To evaluate the convergence rate and relative numer-
ical accuracy of the existing algorithm comparisons were made with the commercially available
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Figure 10. Correlation at �=60.

software Fluent (version 6.3.26). The same exact mesh topology, 139 891 cells, was used for the
comparison. The steady state SIMPLE algorithm was chosen in the Fluent software along with
the second-order accurate discretization for the convective velocity and pressure gradients. The
relaxations selected for this work were also chosen in Fluent (which happens to be the defaults
recommended by Fluent). Figures 13 and 14 show the convergences rates for the absolute residuals
R� and Rmass. Comparisons of these two figures indicate that the proposed algorithm is competitive
with the observed convergence rates of the Fluent software package.

Figure 15 shows the simulation results for Fluent and the proposed algorithm at the �=75
location. These results show that the proposed algorithm predicts the solution to the same level
of accuracy as Fluent. Only one line plot is shown in this paper but it should be noted that all
sections showed the same level of agreement between Fluent and the current algorithm.

9.2. Particle-driven cavity

The algorithm proposed in this paper has been designed to handle traditional flow fields as well
as multi-physics applications such as gas–particle flows. As mentioned before this type of system
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adds additional non-linearities through coupling source terms which link the primary fluid to the
secondary physics. To demonstrate the strength of this algorithm an idealistic two-dimensional
gas/particle system is proposed. This system provides a test case similar in concept to the lid-
driven cavities, where a cavity of fluid is driven in a circular motion by particle movement rather
than wall shear forces.

Figure 16 shows a schematic of the proposed particle-driven cavity. A continuous uniform
distribution of particles is introduced as indicated at the top of the cavity. These particles travel
at a uniform velocity through the cavity staying within the shaded region indicated. When the
particles reach the opposite side of the cavity they are removed from the system.

9.2.1. Phase coupling momentum source terms. The driving force for fluid motion in this cavity
is due to the drag force of the particulate passing through the fluid. To couple the fluid phase with
the particulate phase additional force terms, Fi , are included in the fluid momentum equation, see
Equation (10). These force terms are equal and opposite in direction to the drag force of the fluid
acting on the particulate.
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Figure 13. Un-scaled residuals for current algorithm.
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Figure 14. Un-scaled residuals observed from Fluent.

To include the particulate force terms in the momentum equation the drag force will be written
using the standard form, see Equation (9). Equation (33) is used to represent the force relationship
for each component of the Cartesian momentum equations.

Fparticle
i (ui,p)=Fexplicit

i +F implicit
i ui,p (33)

where Fparticle
i is the drag force acting on the fluid in the Cartesian direction i . Note that this

source term is a linearized function with respect to the centroidal velocity component, ui,p. The
implicit and explicit terms for this equation can be derived from the drag relationship between
the particulate and the fluid. The linearized portion of this relationship is typically based on the
relative slip velocity between the fluid and particle velocities.
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Figure 16. Particle-driven cavity.

For this test case we will consider a one-way-type coupling, where the particulate motion will
be considered constant throughout the particle zone and will only influence the motion of the fluid
in the vertical direction. A simple form of the momentum source term, Fparticle

y , will be assumed by
noting that the fluid velocity will tend toward the particulate velocity. The strength of this tendency
will be dictated by the relationship between the implicit and explicit terms of Equation (33).
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Figure 17. Mesh topology.

Table I. Source term constants.

Case number Fy
explicit Fy

implicit

1 50 −50
2 100 −100
3 150 −150
4 200 −200

9.2.2. Test case setup. The numerical stability of the proposed algorithm is compared with the
treatment suggested by Mathur and Murthy [4], see Equation (34). The V−nini/A

ui
p term present

in the proposed algorithm, see Equations (26) and (29), is replaced with Equation (34), where N
is the dimension of the system (2 or 3):

V−nini

Aui
p

= NV−∑N
i=1,N Aui

p
(34)

Half of the cavity shown in Figure 16 was modeled taking advantage of the symmetry of the
system. A two-dimensional 597 control volume mesh, see Figure 17, was used for the analysis.
The fluid properties of standard air were used, �=1.225kg/m3 and �=1.7894kg/(ms).

A particulate velocity of 1m/s was assumed and the driving force of Fparticle
y was varied as

shown in Table I. Note that each case has an implicit/explicit pair which drives the momentum
source to zero when the primary control volume velocity, uy,p, approaches 1m/s. Conversely,
when the primary velocity is not 1m/s then the momentum source has a non-zero value. The
strength of this source varies between each of the cases proposed.
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Figure 18. Residuals (Case 1): (a) Aui
p method: averaging and (b) Aui

p method: proposed.
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Figure 19. Residuals (Case 2): (a) Aui
p method: averaging and (b) Aui

p method: proposed.

Each case proposed in Table I introduces a stronger source term and therefore increases the
non-isotropic nature of the V−nini/A

ui
p terms. Figures 18–21 trace the convergence rates for each

of these cases.
The residuals for Case 1, Figure 21, show well-behaved convergence rates for both methods

with the proposed method converging at a slightly faster rate. Instabilities begin to appear in Case 2
for the averaging method. The instabilities become more pronounced in Cases 3 and 4 for the
averaging technique whereas the proposed algorithm remains stable and well behaved.

This series of cases highlight the importance of treating the V−nini/A
ui
p correctly. The proposed

method retains the directional influence of the momentum source terms. This insures that the
resulting pressure correction distribution from Equation (26) senses the non-isotropic nature of
the momentum source, providing the proper projection of a new pressure distribution. The face
velocity corrections, Equation (29), must also sense the non-isotropic nature and therefore it is
important to treat the V−nini/A

ui
p term consistent with that used in Equation (26).
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Figure 20. Residuals (Case 3): (a) Aui
p method: averaging and (b) Aui

p method: proposed.
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Figure 21. Residuals (Case 4): (a) Aui
p method: averaging and (b) Aui

p method: proposed.

10. CLOSING REMARKS

This work details a SIMPLE-based colocated pressure correction algorithm. The development
of the proposed algorithm treats the coupling of the momentum and continuity equations in a
general yet consistent form. The source of the commonly referred fourth-order pressure damping
is detailed as the mc term in this work. Two classical bench marks are used with fully arbitrary
polygonal/polyhedral mesh topologies demonstrating the applicability and competitiveness of the
current algorithm with existing implementations (Fluent). A new benchmark case was used to
clearly show the importance of correctly treating the SIMPLE-based coupling when arbitrary grid
structures and multiphase flows are present.
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NOMENCLATURE

Scalars

A surface area
Aui
p momentum equation i diagonal matrix coefficient

Aui
f momentum equation i off diagonal matrix coefficient

F force
p static pressure
p′ pressure correction
Qui momentum equation i explicit term
S control volume surface
S� scalar � source term
t time
V− volume
� density of the fluid
� scalar variable
� diffusion coefficient
� momentum relaxation

Vectors

n,ni control volume face normal unit vector
s,si control volume face tangent unit vector perpendicular to n and t
t, ti control volume face tangent unit vector perpendicular to n and s
u,ui fluid velocity

Subscripts

f control volume surface
i cartesian direction
p primary control volume variable
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